KIT

Karlsruhe Institute of Technology

A Theory of C-Style Memory Allocation

Stephan Falke, Florian Merz, and Carsten Sinz

Research Group “Verification meets Algorithm Engineering”

1ist_node {
data;

1ist_node “taili
}i 1ist _node 11sts
* {
list «reverse(1is] j)NF—
is o =
tist *r 7,
1ist
r !t N
=
a7z
’ P

KIT — University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Introduction ﬂ(".

titute of Technology

m Modeling the memory content is important in program analysis
m Formalized using McCarthy’s theory of arrays

Introduction ﬂ(".

titute of Technology

m Modeling the memory content is important in program analysis
m Formalized using McCarthy’s theory of arrays

m Equally important: memory protection
a Often only handled in an ad-hoc and informal way

Introduction ﬂ(".

titute of Technology

m Modeling the memory content is important in program analysis
m Formalized using McCarthy’s theory of arrays

m Equally important: memory protection
a Often only handled in an ad-hoc and informal way

a Solution:

An SMT theory for reasoning about memory access correctness

m Precise formalization of malloc and free
m Opportunities for simplification of formulas using rewrite rules

® Modular and local reasoning

LLBMC — Low-Level Bounded Model Checking ~ [T

te of Technology

@ LLBMC = Low-Level (Software) Bounded Model Checking

a Low-Level: Embedded devices, systems code, ...

m Software: Programs written in C/C++

m Bounded: restricted number of nested function calls and loop iterations
m Model Checking: bit-precise static analysis

LLBMC — Low-Level Bounded Model Checking ~ \I{|T

te of Technology

@ LLBMC = Low-Level (Software) Bounded Model Checking

a Low-Level: Embedded devices, systems code, ...

m Software: Programs written in C/C++

m Bounded: restricted number of nested function calls and loop iterations
m Model Checking: bit-precise static analysis

m Properties checked:

m Built-in properties: invalid memory access, use-after-free, double free,
arithmetic overflow, division by zero, ...
@ User-supplied properties: assert statements

Software Bounded Model Checking Q(IT

m Property checking of programs is undecidable in general

Software Bounded Model Checking Q(IT

m Property checking of programs is undecidable in general

m Bugs manifest themselves in finite runs of the program

Software Bounded Model Checking ﬂ(“'

sruhe Institute of Technology

m Property checking of programs is undecidable in general
m Bugs manifest themselves in finite runs of the program

m Software bounded model checking:
a Analyze only bounded program runs

m Restrict number of nested function calls and inline functions
m Restrict number of loop iterations and unroll loops

m Property checking becomes decidable using an SMT solver

The LLBMC Approach AT

a Fully supporting real-life programming languages is cumbersome

The LLBMC Approach AT

a Fully supporting real-life programming languages is cumbersome

m Particularly true for C/C++ due to their complex semantics

The LLBMC Approach AT

sruhe Institute of Technology

a Fully supporting real-life programming languages is cumbersome
m Particularly true for C/C++ due to their complex semantics

m Solution: Do not operate on the source code, but use a compiler IR
m Well-defined, simple semantics
m Closer to the program that is actually run on the machine
m Support for wide range of programming languages comes “for free”

The LLBMC Approach

Karlsruhe Institute of Technology

a Fully supporting real-life programming languages is cumbersome
m Particularly true for C/C++ due to their complex semantics

m Solution: Do not operate on the source code, but use a compiler IR
m Well-defined, simple semantics
m Closer to the program that is actually run on the machine
m Support for wide range of programming languages comes “for free”

Encode
Tany

Compiler
Frontend

Unroll &
Inline

Source program

LLBMC and SMT AT

sruhe Institute of Technology

m Theory of bitvectors (Tgy) for register operations (ALU):
m Mostly straightforward, not discussed in this talk

LLBMC and SMT AT

sruhe Institute of Technology

m Theory of bitvectors (Tgy) for register operations (ALU):
m Mostly straightforward, not discussed in this talk

m Theory of arrays (7 4) for memory operations:

a Memory is one big array of bytes
m Translate 1oad and store instructions
m Introduce explicit memory states: a, &, ...

LLBMC and SMT AT

sruhe Institute of Technology

m Theory of bitvectors (Tgy) for register operations (ALU):
m Mostly straightforward, not discussed in this talk

m Theory of arrays (7 4) for memory operations:

a Memory is one big array of bytes
m Translate 1oad and store instructions
m Introduce explicit memory states: a, &, ...

%x = load i8%* Yp
store i8* Yp, i8 Ux

read(a, p)

~ X el
a = write(a, p, x)

LLBMC and SMT AT

sruhe Institute of Technology

m Theory of bitvectors (Tgy) for register operations (ALU):
m Mostly straightforward, not discussed in this talk

m Theory of arrays (7 4) for memory operations:

a Memory is one big array of bytes
m Translate 1oad and store instructions
m Introduce explicit memory states: a, &, ...

store i8* Yp, i8 Ux . a = write(a, p, x)
%x = load i8%* Yp x = read(a, p)

Memory Related Program Bugs Q(IT

sruhe Institute of Technology

m Kinds of memory related bugs:

m load from a non-allocated region of memory
m store to a non-allocated region of memory
m free of a non-allocated region of memory

m free of an already freed region of memory
a

Memory Related Program Bugs AT
m Kinds of memory related bugs:

m load from a non-allocated region of memory
m store to a non-allocated region of memory
m free of a non-allocated region of memory

m free of an already freed region of memory
a

a Not handled by T 45y, but should be detected by LLBMC

Memory Related Program Bugs ﬂ(“'

sruhe Institute of Technology

m Kinds of memory related bugs:

m load from a non-allocated region of memory
m store to a non-allocated region of memory
m free of a non-allocated region of memory

m free of an already freed region of memory
a

a Not handled by T 45y, but should be detected by LLBMC

m Need to be handled atop of T 45y

Encoding Memory Access Correctness in SMT [T

te of Technology

@ Current approach in LLBMC (SSV '10):

m Introduce explicit heap states: h, /', ...

® Memory access correctness constraints explicitly encoded in 745y
m Creates huge subformulas for each memory access operation

m Needs knowledge of the complete heap state history

Encoding Memory Access Correctness in SMT [T

te of Technology

@ Current approach in LLBMC (SSV '10):

m Introduce explicit heap states: h, /', ...

® Memory access correctness constraints explicitly encoded in 745y
m Creates huge subformulas for each memory access operation

m Needs knowledge of the complete heap state history

accessible(h,q,t) = \/ Cexec(l) A —deallocated(h, h,p) A contained(p,s,q.t)
H=h
I: W = malloc(H p,s)

deallocated(h, h,p) = \/ Coxec(l) N P=q
h=h*=<n

I: h* = tree(h*,q)

Encoding Memory Access Correctness in SMT [T

te of Technology

a Current approach in LLBMC (SSV ’10):

m Introduce explicit heap states: h, /', ...

® Memory access correctness constraints explicitly encoded in 745y
m Creates huge subformulas for each memory access operation

m Needs knowledge of the complete heap state history

m Goals of this work:

m Precise formalization of malloc and free as an SMT theory
a Opportunities for simplification of formulas using rewrite rules
m Modular and local reasoning: partial heap state history suffices

Motivation: McCarthy’s Theory of Arrays AT

McCarthy’s read-over-write axioms:

i=j = read(write(a,i x),j) = x
i#j = read(write(a i x) j) = read(aj)

Motivation: McCarthy’s Theory of Arrays AT

McCarthy’s read-over-write axioms:

i=j = read(write(a, i x)j)=x
i#j = read(write(a, i, x),j) = read(a,j)

Reduction to equality logic:
1. Apply axioms in the form of the rewrite rule

read(write(a, i, x),j) — ITE(i=}, x, read(a,j))

Motivation: McCarthy’s Theory of Arrays AT

McCarthy’s read-over-write axioms:

i=j = read(write(a, i x)j)=x
i#j = read(write(a, i, x),j) = read(a,j)

Reduction to equality logic:

1. Apply axioms in the form of the rewrite rule
read(write(a, i, x),j) — ITE(i=}, x, read(a,j))
2. Replace reads by fresh variables, add Ackermann constraints

i=j = Vread(a,i) = Vread(a)

Motivation: McCarthy’s Theory of Arrays AT

McCarthy’s read-over-write axioms:

i=j = read(write(a, i x)j)=x
i#j = read(write(a, i, x),j) = read(a,j)

Reduction to equality logic:

1. Apply axioms in the form of the rewrite rule
read(write(a, i, x),j) — ITE(i=}, x, read(a,j))
2. Replace reads by fresh variables, add Ackermann constraints

i=j = Vread(a,i) = Vread(a)

More efficient approaches exist, e.g., Boolector’s lemmas-on-demand

Introducing 7 ﬂ(“.

sruhe Institute of Technology

m Objects of type H encode information about the heap state

m Contain the whole history of malloc and free operations
m Do not encode information about the data stored in the heap
m Are used to determine memory access correctness

Introducing 7 ﬂ(“.

sruhe Institute of Technology

m Objects of type H encode information about the heap state

m Contain the whole history of malloc and free operations
m Do not encode information about the data stored in the heap
m Are used to determine memory access correctness

Functions of type H:

e Heap without any allocation
® malloc(h,p,s) Allocate region [p, p + s) (if possible)
m free(h, p) De-allocate region starting at p

(if currently allocated)

Introducing 7 ﬂ(“.

sruhe Institute of Technology

m Objects of type H encode information about the heap state

m Contain the whole history of malloc and free operations
m Do not encode information about the data stored in the heap
m Are used to determine memory access correctness

Functions of type H:

e Heap without any allocation
® malloc(h,p,s) Allocate region [p, p + s) (if possible)
m free(h, p) De-allocate region starting at p

(if currently allocated)

Aucxilliary functions:

® mallocsize(h, p) Size of the memory region starting at p
(if currently allocated)

Predicates of 7

Predicates:

® accessible(h, p, s)
@ freeable(h,p)

® mallocable(h, p, s)

Karlsruhe Institute of Technology

Is [p, p+ s) contained in an allocated region?
Is p the start of an allocated region?
Can [p, p+ s) be allocated?

Predicates of 73 ﬂ(“.

Predicates:
® accessible(h,p,s) Is [p,p+ s) contained in an allocated region?
@ freeable(h,p) Is p the start of an allocated region?

® mallocable(h,p,s) Can [p, p+ s) be allocated?

The semantics of the predicates is specified using axioms

Axioms formallocable

mallocable(h,p,s) Can [p,p+ s) be allocated?

Karlsruhe Institute of Technology

Axioms for mallocable AT
mallocable(h,p,s) Can [p,p+ s) be allocated?

® [p,p+ s) can be allocated if it does not overlap with any allocated
memory region

Axioms for mallocable ﬂ(“.

sruhe Institute of Technology

mallocable(h,p,s) Can [p,p+ s) be allocated?

® [p,p+ s) can be allocated if it does not overlap with any allocated
memory region

m Various possible axiomatizations:

m Stack-like: p needs to be “on the right” of all regions that have been
allocated before

m Axiomatize non-overlap precisely

T

Axioms for freeable

freeable(h, q) Is g the start of an allocated region?

T

sruhe Institute of Technology

Axioms for freeable
freeable(h, q) Is g the start of an allocated region?

freeable(e, q) < L

T

sruhe Institute of Technology

Axioms for freeable

Karlsruhe Institute of Technology

freeable(h, q) Is g the start of an allocated region?

freeable(e, q) < L

mallocable(h,p,S) A p=q = freeable(malloc(h,p,S),q)< T
—mallocable(h,p,S) V p#q = freeable(malloc(h,p,s),q) < freeable(h,q)

Axioms for freeable

Karlsruhe Institute of Technology

freeable(h, q) Is g the start of an allocated region?

freeable(e, q) < L

mallocable(h,p,S) A p=q = freeable(malloc(h,p,S),q)< T
—mallocable(h,p,s) V p#q

U

freeable(malloc(h, p, S), q) < freeable(h, q)

freeable(h,p) A p=q

I

freeable(free(h,p),q) & L
—freeable(h,p) V p#q = freeable(free(h p),q) < freeable(h,q)

Axioms formallocsize

mallocsize(h, q) Size of the memory region starting at g
(if currently allocated)

T

sruhe Institute of Technology

Axioms formallocsize

mallocsize(h, q) Size of the memory region starting at g
(if currently allocated)

mallocsize(e,q) =0

T

sruhe Institute of Technology

Axioms formallocsize

Karlsruhe Institute of Technology

mallocsize(h, q) Size of the memory region starting at g
(if currently allocated)
mallocsize(e,q) =0

mallocable(h,p,S) A p=q = mallocsize(malloc(h,p,S),q)=Ss
—mallocable(h,p,S) V p#q = mallocsize(malloc(h,p,Ss), q) =mallocsize(h,q)

Axioms formallocsize

Karlsruhe Institute of Technology

mallocsize(h, q) Size of the memory region starting at g
(if currently allocated)

mallocable(h,p,s) A p=q =
—mallocable(h,p,s) V p#q

I

freeable(h,p) A p=4q

I

—freeable(h,p) V p#q =

mallocsize(e,q) =0

mallocsize(malloc(h,p,s),q) =S
mallocsize(malloc(h, p,S),q) = mallocsize(h, q)

mallocsize(free(h,p),q) =0
mallocsize(free(h, p),q) = mallocsize(h, q)

Axioms for accessible Q(IT

te of Technology

accessible(h,q,t) Is[q,q+t) contained in an allocated region?

Axioms for accessible Q(IT

sruhe Institute of Technology

accessible(h,q,t) Is[q,q+t) contained in an allocated region?

accessible(e, q,t) & L

Axioms for accessible

Karlsruhe Institute of Technology

accessible(h,q,t) Is[q,q+t) contained in an allocated region?

accessible(e, q,t) & L

mallocable(h,p,S) A contained(p,s,q,t) = accessible(malloc(h,p,s),q,t)< T
—mallocable(h,p,S) V —contained(p,S,q,t) = accessible(malloc(h,p,s),q,t)
& accessible(h, g, t)

Axioms for accessible

Karlsruhe Institute of Technology

accessible(h,q,t) Is[q,q+t) contained in an allocated region?

mallocable(h,p,S) A contained(p,s,q,t)
—mallocable(h,p,S) V —contained(p,S,q,t)

—freeable(h, p)

freeable(h, p) A disjoint(p,mallocsize(h,p),q,t)

freeable(h, p) A —disjoint(p,mallocsize(h,p),q,t)

accessible(e, q,t) & L

accessible(malloc(h,p,s),q, t) < T
accessible(malloc(h, p, s),q,t)
& accessible(h, g, t)

accessible(free(h, p), q,t)

< accessible(h, g, t)
accessible(free(h, p), q,t)

& accessible(h, g, t)
accessible(free(h,p),q,t) & L

Implementation

m 7Ty is not supported by off-the-shelf SMT solvers (yet?)

Karlsruhe Institute of Technology

Implementation

m 7Ty is not supported by off-the-shelf SMT solvers (yet?)

m Reduction to 73y : Apply axioms in the form of rewrite rules

Karlsruhe Institute of Technology

Implementation

Karlsruhe Institute of Technology

m 7Ty is not supported by off-the-shelf SMT solvers (yet?)

m Reduction to 73y : Apply axioms in the form of rewrite rules

mallocable(h, p,S) A contained(p,s,q,t) = accessible(malloc(h,p,s), q,t) < |
—mallocable(h,p,S) V —contained(p,s,q,t) = accessible(malloc(h,p,s),q,t)
& accessible(h, g, t)

N

accessible(malloc(h,p, s),q,t) — ITE(
mallocable(h,p,S) A contained(p,s,q,t),
T
accessible(h, g, t)

)

Evaluation

Karlsruhe Institute of Technology

Comparison of the current approach (SSV ’10) and 7 in LLBMC on 97
C-programs

LLBMC without Ty,

100

N
1S

wall-clock time (in seconds)

L
1 10
LLBMC with Ty,

L
100

LLBMC without Ty,

1000

=
o
S

10

memory consumption (in MB)

L
10

.
100
LLBMC with Ty

L
1000

Details Q(IT
#mallocs / | #accessible time memory

#frees SSV'10 Ty | SSV'10 Ty
sparsemem 129/ 51 8374 76.2 495 861 404
binary-tree 127 /127 3048 7.5 9.1 150 94
inplace-reverse | 100/ 100 1800 204 10.8 260 119
wcet-bsort100 3/0 120204 124 121 246 246
wcet-statemate 106/0 2816 2.2 0.9 35 9

Conclusions and Future Work ﬂ(IT

te of Technology

m We have presented an SMT theory for reasoning about memory
access correctness

m Precise formalization of malloc and free
m Opportunities for simplification of formulas using rewrite rules
m Modular and local reasoning

Conclusions and Future Work ﬂ(IT

te of Technology

m We have presented an SMT theory for reasoning about memory
access correctness

m Precise formalization of malloc and free
m Opportunities for simplification of formulas using rewrite rules
m Modular and local reasoning

m Performance is roughly comparable to the current approach in LLBMC

Conclusions and Future Work ﬂ(“'

te of Technology

m We have presented an SMT theory for reasoning about memory
access correctness

m Precise formalization of malloc and free
m Opportunities for simplification of formulas using rewrite rules
m Modular and local reasoning

m Performance is roughly comparable to the current approach in LLBMC

m Potential performance increases:

m Improved rewrite engine/strategy in the reduction
m Use of rewrite rules that are derived from the axioms

Conclusions and Future Work ﬂ(IT

titute of Technology

m We have presented an SMT theory for reasoning about memory
access correctness

m Precise formalization of malloc and free
m Opportunities for simplification of formulas using rewrite rules
m Modular and local reasoning

m Performance is roughly comparable to the current approach in LLBMC

m Potential performance increases:

m Improved rewrite engine/strategy in the reduction
m Use of rewrite rules that are derived from the axioms

@ Open Questions:

1. Can Ty be integrated into SMT solvers?
2. Is the lemmas-on-demand approach applicable?

