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Introduction

1

Modeling the memory content is important in program analysis
Formalized using McCarthy’s theory of arrays

Equally important: memory protection
Often only handled in an ad-hoc and informal way

Solution:

An SMT theory for reasoning about memory access correctness

Precise formalization of malloc and free

Opportunities for simplification of formulas using rewrite rules

Modular and local reasoning
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LLBMC — Low-Level Bounded Model Checking

2

LLBMC = Low-Level (Software) Bounded Model Checking
Low-Level: Embedded devices, systems code, . . .
Software: Programs written in C/C++
Bounded: restricted number of nested function calls and loop iterations
Model Checking: bit-precise static analysis

Properties checked:
Built-in properties: invalid memory access, use-after-free, double free,
arithmetic overflow, division by zero, . . .
User-supplied properties: assert statements
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Property checking of programs is undecidable in general

Bugs manifest themselves in finite runs of the program

Software bounded model checking:
Analyze only bounded program runs

Restrict number of nested function calls and inline functions
Restrict number of loop iterations and unroll loops

Property checking becomes decidable using an SMT solver
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Fully supporting real-life programming languages is cumbersome

Particularly true for C/C++ due to their complex semantics

Solution: Do not operate on the source code, but use a compiler IR
Well-defined, simple semantics
Closer to the program that is actually run on the machine
Support for wide range of programming languages comes “for free”



The LLBMC Approach

4

Fully supporting real-life programming languages is cumbersome

Particularly true for C/C++ due to their complex semantics

Solution: Do not operate on the source code, but use a compiler IR
Well-defined, simple semantics
Closer to the program that is actually run on the machine
Support for wide range of programming languages comes “for free”



The LLBMC Approach

4

Fully supporting real-life programming languages is cumbersome

Particularly true for C/C++ due to their complex semantics

Solution: Do not operate on the source code, but use a compiler IR
Well-defined, simple semantics
Closer to the program that is actually run on the machine
Support for wide range of programming languages comes “for free”



The LLBMC Approach

4

Fully supporting real-life programming languages is cumbersome

Particularly true for C/C++ due to their complex semantics

Solution: Do not operate on the source code, but use a compiler IR
Well-defined, simple semantics
Closer to the program that is actually run on the machine
Support for wide range of programming languages comes “for free”
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Theory of bitvectors (TBV ) for register operations (ALU):
Mostly straightforward, not discussed in this talk

Theory of arrays (TA) for memory operations:
Memory is one big array of bytes
Translate load and store instructions

Introduce explicit memory states: a,a′, . . .
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Theory of bitvectors (TBV ) for register operations (ALU):
Mostly straightforward, not discussed in this talk

Theory of arrays (TA) for memory operations:
Memory is one big array of bytes
Translate load and store instructions

Introduce explicit memory states: a,a′, . . .

store i8* %p, i8 %x
 

â = write(a,p, x)
%x = load i8* %p x = read(â,p)



Memory Related Program Bugs
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Kinds of memory related bugs:
load from a non-allocated region of memory
store to a non-allocated region of memory
free of a non-allocated region of memory
free of an already freed region of memory
. . .

Not handled by TABV , but should be detected by LLBMC

Need to be handled atop of TABV
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Introduce explicit heap states: h,h′, . . .
Memory access correctness constraints explicitly encoded in TABV
Creates huge subformulas for each memory access operation
Needs knowledge of the complete heap state history
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Current approach in LLBMC (SSV ’10):
Introduce explicit heap states: h,h′, . . .
Memory access correctness constraints explicitly encoded in TABV
Creates huge subformulas for each memory access operation
Needs knowledge of the complete heap state history

accessible(h,q, t) ≡
∨

h′�h
I : h′= malloc(ĥ′ ,p,s)

cexec(I) ∧ ¬deallocated(h′,h,p) ∧ contained(p, s,q, t)

deallocated(h,h′,p) ≡
∨

h�h∗�h′

I : h∗= free(ĥ∗ ,q)

cexec(I) ∧ p = q



Encoding Memory Access Correctness in SMT
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Current approach in LLBMC (SSV ’10):
Introduce explicit heap states: h,h′, . . .
Memory access correctness constraints explicitly encoded in TABV
Creates huge subformulas for each memory access operation
Needs knowledge of the complete heap state history

Goals of this work:
Precise formalization of malloc and free as an SMT theory
Opportunities for simplification of formulas using rewrite rules
Modular and local reasoning: partial heap state history suffices
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2. Replace reads by fresh variables, add Ackermann constraints
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More efficient approaches exist, e.g., Boolector’s lemmas-on-demand
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freeable(h,p) Is p the start of an allocated region?
mallocable(h,p, s) Can [p,p + s) be allocated?
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The semantics of the predicates is specified using axioms
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mallocable(h,p, s) Can [p,p + s) be allocated?

[p,p + s) can be allocated if it does not overlap with any allocated
memory region

Various possible axiomatizations:
Stack-like: p needs to be “on the right” of all regions that have been
allocated before
Axiomatize non-overlap precisely
. . .
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mallocsize(h,q) Size of the memory region starting at q
(if currently allocated)
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TH is not supported by off-the-shelf SMT solvers (yet?)

Reduction to TBV : Apply axioms in the form of rewrite rules

mallocable(h,p, s) ∧ contained(p, s,q, t) ⇒ accessible(malloc(h,p, s),q, t)⇔ >
¬mallocable(h,p, s) ∨ ¬contained(p, s,q, t) ⇒ accessible(malloc(h,p, s),q, t)

⇔ accessible(h,q, t)

 

accessible(malloc(h,p, s),q, t) → ITE(

mallocable(h,p, s) ∧ contained(p, s,q, t),
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Comparison of the current approach (SSV ’10) and TH in LLBMC on 97
C-programs
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Details
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#mallocs / #accessible time memory
#frees SSV ’10 TH SSV ’10 TH

sparsemem 129 / 51 8374 76.2 49.5 861 404
binary-tree 127 / 127 3048 7.5 9.1 150 94
inplace-reverse 100 / 100 1800 20.4 10.8 260 119
wcet-bsort100 3 / 0 120204 12.4 12.1 246 246
wcet-statemate 106 / 0 2816 2.2 0.9 35 9



Conclusions and Future Work
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We have presented an SMT theory for reasoning about memory
access correctness

Precise formalization of malloc and free
Opportunities for simplification of formulas using rewrite rules
Modular and local reasoning

Performance is roughly comparable to the current approach in LLBMC

Potential performance increases:
Improved rewrite engine/strategy in the reduction
Use of rewrite rules that are derived from the axioms

Open Questions:

1. Can TH be integrated into SMT solvers?

2. Is the lemmas-on-demand approach applicable?
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